- (b) The compound $W(\eta^5 C_5 H_5)((H)(CO)_3)$ reacts with $C_3 H_6$ to give three products ₹1=8×₹A, B and C. Identify and draw the structure of compounds A, B and C. Each compound obeys the 18-electron rule.
- (c) For the following species, calculate the number of electrons in the valance shell, give their reasonable structures and comment on their relative stabilities. 21/2×4=10

(ii) $\left[C_p(CO)_2Fe\right]_2$ abauogmoo

(iii) $Mn_2(CO)_{10}$

(dq (iv) Fe3(CO)12 so s'nosnishi W

- (d) Discuss the preparation and structure of ferrocene. Explain the mechanism of acetylation reaction. 21/2+21/2+5=10
- On the basis of VBT, how will you explain lability and inertness of transition metal complexes? Discuss how the following factors affect the lability of a complex: $4+(2\times3)=10$

(i) Geometry of the complex

(ii) Oxidation state of the metal ion

-lydie (iii) Ionic radius

What are metal alkyls? Discuss the structural features of methyl lithium and trialkyl aluminium.

Total number of printed pages-4

3 (Sem-6/CBCS) CHE HC 1

2023

CHEMISTRY

(Honours Core)

Low spin complexes are labile but

Paper: CHE-HC-6016 True or Falsel

(Inorganic Chemistry-IV)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following: word vidw misi1×7=7

- (a) What are fluxional organometallic compounds?
- (b) The most suitable route to prepare the trans- isomer of [PtCl₂(NH₃)(PPh₃)] is:
 - (i) $[PtCl_4]^{2-}$ with PPh_3 followed by reaction with NH3 aldiagon
- (ii) $[PtCl_4]^{2-}$ with NH_3 followed by ment retained with PPhartitedus

- (iii) $[P(NH_3)_4]^{2+}$ with HCl followed by reaction with PPh₃
- (iv) $|P(NH_3)_4|^{2+}$ with PPh_3 followed by reaction with HCl
- (c) $|Ni(CN)_4|^2$ is kinetically _____ but thermodynamically _____.
- (d) 'Low spin complexes are labile but prefer associative mechanism'.

[True or False]

- (e) How many metal-metal (M-M) bonds are there in $Ir_4(CO)_{12}$?
- (f) Why metal-carbonyl complexes always obey 18 election rule?
- (g) Why interfering radicals do not interfere till group II in the analysis of basic radicals?
- 2. Explain why/how: 2×4=8
 - (a) Square planar complexes are generally labile.
 - (b) Solubility product plays an important role in qualitative analysis.
 - (c) Direct nitration of ferrocene is not possible.
 - (d) Ferrocene undergoes electrophilic substitution 10⁶ times faster than benzene.

3. Answer any three of the following:

5×3=15

- (a) Discuss the dissociative nucleophile substitution reaction in the light of CFT.
- (b) Discuss the methods of removal of fluoride and phosphate ions during the qualitative analysis of salt mixtures.

21/2+21/2=5

- (c) Explain the mechanism of inner sphere redox reaction of coordination compounds.
- (d) Write the plausible mechanism for the catalytic hydrogenation of alkenes using Wilkinson's catalyst, ClRh(PPh₃)₃. Identify the reaction type of each step.
- (e) Discuss the bonding in M-CO fragments. How, IR spectra can be used to distinguish between terminal and bridging CO groups?

 3+2=5
- 4. Answer any three of the following:

 $10 \times 3 = 30$

- (a) Write notes on the following: 5×2=10
- (i) Multicenter bonding in methyllithium.
 - (ii) Stepwise and overall formation constants of a reaction.

- (iii) Predict the chemical shift positions for the protons in 1-bromoethane and hence draw a rough sketch of the ¹H NMR spectrum.
- (iv) In a ¹H NMR spectrum, the protons of ethene appear at a more downfield region than expected. Why?
- (f) (i) Explain the basic principle of NMR spectroscopy. 5
 - (ii) Explain, why ESR spectrum is recorded in derivative mode? 2
 - (iii) Predict and draw the hyperfine structure of CH_3 using ESR spectroscopy.

Total number of printed pages-8

3 (Sem-6/CBCS) CHE HC 2

2023

CHEMISTRY

(Honours Core)

Paper: CHE-HC-6026

(Organic Chemistry-V)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) What do you mean by fingerprint region?
 - (b) Which of the following is a chromophore?
 - (i) $-SO_3H$
 - (ii) -OH
 - (iii) -COOH
 - (iv) $-NO_2$

- (c) The general formula of carbohydrate is—
 - (i) $(C_4H_2O)_n$
 - (ii) $(C_6H_2O)_n$
 - (iii) $(CH_2O)_n$
 - (iv) $(C_2H_2O)_n$
- (d) Which of the following compounds do not absorb light above 200mμ?
 - (i) Ethanol
 - (ii) Diethyl ether
 - (iii) 2-Butanone
 - (iv) Benzene
- (e) At what wavelength range the coloured compounds absorb?
- (f) Give one example of a thermosetting plastic.
- (g) What are the expected products of hydrolysis of Lactose?

- 2. Give answer of the following: 2×4=8
 - (a) What are the different types of electronic transitions that occur in an organic molecule?
 - (b) Find out the products A and B in the following reaction:

 Glucose + $NH_2OH \longrightarrow A+B$
 - (c) What is a mordant dye? Give one example. 1+1=2
 - (d) Give one example of each of the following polymers: 1+1=2
 - (i) Polyamides
 - (ii) Polyesters
- 3. Answer any three of the following:

5×3=15

(a) (i) How can you distinguish between intra and inter-molecular hydrogen bonding with the help of IR spectroscopy?

3

(ii) How can you distinguish the following pair of compounds using IR spectroscopy Propanone and Propanal?

- (b) Fructose contains a keto group, but still it gives silver mirror test on treatment with Tollen's reagent. Explain by showing the rearrangement reactions involved. What is the name of the rearrangement reaction? 2+2+1=5
- (c) Match the following in 'A' with those given in 'B': 1×5=5

'A'

'B'

- (i) D-Sorbitol (a) Anomeric carbon
- (ii) L-Ascorbic acid (b) A disaccharide
- (iii) Glycoside (c) A sugar lactone
- (iv) C-L of glucose (d) Sugar alcohol
- (v) Maltose (e) A reducing sugar
 - (d) Write the synthesis of Congo red dye. Show the structural changes involved due to which it changes color from red to blue in acid solution. 2+3=5
 - (e) (i) Write the full form of the following terms:
 - (i) PAN
 - (ii) PTFE
 - (iii) PCTFE
 - (iv) BSR

- (ii) What are polyolefins and polydienes? Give one example of each. 1+2=3
- 4. Answer **any three** of the following: $10 \times 3 = 30$
 - (a) (i) Draw the Fisher's Projection formula of D-glucose.
 - (ii) What do you mean by the term anomerization? Show the mechanism of anomerization of *D*-glucose.
 - (iii) Draw the chair conformers of both the $\alpha D(+)$ and $\beta D(+)$ glucopyranose.
 - (iv) How do you explain the greater stability of $\beta D(+)$ -glucopyranose from their conformers?

1+3+3+3=10

- (b) (i) How will you bring the following conversions? 3×2=6
 - (A) An aldopentose to an aldohexose
 - (B) D-fructose to D-glucose

- (ii) How many stereoisomers are possible for both aldohexoses and 2-ketohexose?
- (iii) Find X and Y in the following reactions:

- (c) (i) Give the classification of dyes on the basis of their functional group or chemical constitution. 5
 - (ii) What are acid and basic dyes?
 Give one example of each dye.
 Name the fabric to which they can
 be applied.

 5
- (d) (i) What are the two monomers of Dacron?
 - (ii) Give two differences between linear polymers and branched chain polymers. 2

- (iii) Write a note on biodegradable polymers. 2
- (iv) Fill in the blanks: 1×4=4
 - (A) Polymers which have (—COO—) linkages are known as _____.
 - (B) Polyethene is obtained by the polymerisation of _____.
 - (C) Polystyrene is obtained by the polymerisation of styrene in presence of _____ as initiator.
 - (D) Proteins are the examples of polymers.
- (e) (i) How many electronic transitions are expected for benzene? 1
 - (ii) Use Woodward-Fieser rule to determine the λ_{max} of the following compounds: 2+2=4

