14 (CHM-2) 204

2018

CHEMISTRY

Paper: CH-204

(Spectroscopy-2)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer as instructed.

- 1. Find out true **or** false statements and write the corrected statement for the false ones:

 (any five)

 1×5=5
 - (a) Magnetization (Mz) along the direction of the magnetic field can be detected as its operator (I_z) commutes with the detection operator (I_y) .
 - (b) Sensitivity of ¹³C NMR is higher than ¹H.

(e) NMR signal can be detected in the absence of a magnetic field.

(f) ⁶Li is NMR active.

(g) NOE intensity depends on $1/r^3$, where r is the distance between two atoms.

2. Illustrate briefly how the sensitivity of an NMR experiment depends on (use mathematical relation) 1×3=3

(a) Magnetic field

(b) Temperature

(c) T_2 relaxation.

What is transverse (T_2) relaxation time? If a compound has a T_2 of 10^{-4} s, calculate the line width of the NMR signal. 1+2=3

3. Arrange the labelled methyl protons (1-4) of the following compound in the increasing order of chemical shifts. Give brief explanation.

OR

How many methyl proton signals are observed in the ¹H NMR spectrum of myrtenal? Explain briefly.

4. Answer any three:

 $3 \times 3 = 9$

(a) How do you distinguish the following alkenes (A and B) on the basis of ${}^3J_{HH}$? Explain using Karplus equation.

- (b) How is CW NMR different from FT NMR? Draw the line shapes obtained after the Fourier transformation of a time domain signal $S = S_0 e^{(-i\omega t)} e^{(-t/T_2)}$.
- (c) A radiofrequency pulse of 100μs is applied for a sample in a 100MHz (proton Larmour frequency) NMR spectrometer. Calculate the frequency width for excitation and convert it into ppm value. Can you detect the ¹³C NMR signal in the same experiment?

- (d) Predict and draw the intensity pattern of the ¹³C NMR spectrum of DMSO-d₆.
- (e) 60MHz ¹H NMR spectrum of 2-chloroethanol shows strongly coupled spectrum. How do you simplify it? What will be the spin system of the methylene protons if spectrum is recorded in a 500MHz NMR spectrometer? Draw the spectrum schematically recorded at 500MHz.

- 5. Predict and draw the ${}^{31}P$ NMR spectrum of $H_3P.{}^{11}BCl_3$ (${}^{11}B$ has a spin 3/2) if
 - (a) ${}^{1}J_{PH} > {}^{1}J_{PB}$ and
 - (b) ${}^{1}J_{PH} < {}^{1}J_{PB}$

3

OR wolf ...mirripage

Predict and draw the ^{11}B NMR spectrum of $B_{10}H_{10}^{2-}$ ion. Comment on the line width of the spectrum.

6. How many signals do you expect in low and high temperature measurements of the ${}^{1}H$ NMR spectra for the coordinated ethene in the complex $[RhCp(C_{2}H_{4})_{2}]$? Explain briefly.

OR

How do you derive rate constant and the Gibbs free energy from dynamic NMR? Explain briefly.

7. Answer any two:

2×2·5=5

(a) What is the pseudo contact shift observed for paramagnetic metal complexes? How does it provide structural information?

- (b) Why are the solid state NMR spectra broad? How do you simplify it?
- (c) How does the NOE depend on rotational correlation time (t_c) ? How do you use NOE to establish relative configurations of the following structures?

- 8. A paramagnetic compound is analyzed by an EPR experiment using a microwave radiation of 9400 MHz. Predict the position of the EPR signal in Gauss. [Given that, $g_e = 2.0023$, $\beta_e = 9.274 \times 10^{-24} J/T$]. What are X- and P-band EPR?
- 9. Show how the possible nuclear spin orientations of the protons in methyl radical results in hyperfine splitting of the EPR signal.

OR

Predict and justify the EPR spectrum observed for the following copper(II) complex (any one).

 Write down the basic working principle of ESI-MS with representative diagram.

OR

What are the different analysis techniques used for detection of radicals/ions in the mass spectrometry? Explain with suitable examples.

11. Show the fragmentation pattern obtained for the following molecules in mass spectroscopy. Indicate m/z value for the major fragment (any two). 2×2·5=5

and excited state nuclei? Give a 19 examples.

What is the name of the particular rearrangement involved in the above process?

4+1=5

OR

Explain the fragmentation pattern of ferrocene and identify the peaks. Give the isotopic distribution pattern for the M^{2+} peak in the mass spectra of $[Ru(bipy)_3]Cl_2$.

3+2=5

13. What is isomer shift in Mossbauer spectroscopy? How is it related to the s-electron densities and sizes of the ground and excited state nuclei? Give two examples of Mossbauer active nuclei other than ⁵⁷Fe. What are most suitable excited state lifetime and transition energy of nuclei for Mossbauer spectroscopy? 1+1+1+2=5

OR

 $K_4Fe(CN)_6 \cdot 3H_2O$ displays one signal, whereas $K_3Fe(CN)_6$ gives two signals in Mossbauer spectra. Justify. Explain quadrupole splitting with suitable example. $2\cdot 5+2\cdot 5=5$