Association rule mining

O Proposed by Agrawal in 1993.

O It is an important data mining model studied extensively by the database and data mining
community.

O Assume all data are categorical.

O Initially used for Market Basket Analysis to find how items purchased by customers are related

What Is Association Rule Mining?
O Frequent patterns: patterns (set of items, sequence, etc.) that occur frequently in a database
O Frequent pattern mining: finding regularities in data
® What products were often purchased together?
® What are the subsequent purchases after buying a car?

® Can we automatically profile customers?

Why Essential?
O Foundation for many data mining tasks
® Association rules, correlation, causality, sequential patterns, structural patterns, spatial
and multimedia patterns, associative classification, cluster analysis...
® Broad applications
® Basket data analysis, cross-marketing, catalog design, sale campaign analysis, web log
(click stream) analysis.
Association Rule
O Let A={ly,l5,... In} be a set of items.
O Let Tis a transaction database which contains a set of transaction where each transaction t is a
set of items.
O Sotisasubsetof A
Support
O Atransaction t is said to support an item li, if li is presentin t.
O tissaid to support a subset of items ,if t supports each item li in x

O Anitem set has a support s in T, denoted by s(x)r, if s% of transactions in T support x.

Example
O Consider a set of 6 transactions of purchases of books
Say A={ANN,CC,D,TC,CG}and T= {t1,t2,t3,t4,15,t6}
t1={ANN,CC,TC,CG}
t2={CC,D,CG}
t3={ANN,CC,TC,CG}
t4={ANN,CC,D,CG}
t5={ANN,CC,D,TC,CG}
t6={CC,D,TC}
Here t2 supports the item CC,D and CG.
The item D is supported by 4 out of 6 transactions in T

So the support of D is 66.6%

O For a given transaction database T, an association rule is an expression of the form , Where
x and y are subsets of A and holds with confidence T, if t% transactions in T that support x
also support y

O Therule has support o in the transaction set T if 0% of transaction in T support

O The left hand side is called antecedent and the right hand side is called consequent.

Example

t1={ANN,CC,TC,CG}

t2={CC,D,CG}

t3={ANN,CC,TC,CG}

t4={ANN,CC,D,CG}

t5={ANN,CC,TC,CG}

t6={CC,D,TC}

t7={TC}

What is the value of Confidence (t) and support (o) forCC D

t1={ANN,CC,TC,CG}

t2={CC,D,CG}

t3={ANN,CC,TC,CG}

t4={ANN,CC,D,CG}

t5={ANN,CC,TC,CG}

t6={CC,D,TC}

t7={TC}

Total transaction T=7

CC present in 6 transitions

D presentin 3 transactions

CCand D both present in 3 transactions

We know that Support measures how often both the item occur together as a percentage of total
transaction

And Confidence measures how much a particular item is dependant on another.
So Support =3/7 =42.8%

Confidence = 3/6=50%

Example

t1={ANN,CC,TC,CG}

t2={CC,D,CG}

t3={ANN,CC,TC,CG}

t4={ANN,CC,D,CG}

t5={ANN,CC,D,TC,CG}

t6={CC,D,TC}

Assume that 0=50% and t=60%.

ANN CC holds.

The confidence of this rule is in fact 100%, because all the transactions that support ANN also support
CC.

On the other hand , CC ANN also holds but its confidence is 66%

Example Contd..
O Let T consist of 50 transaction. 20 transactions of these contain diapers. 30 transactions contain
beer. 10 transaction contain both diaper and beer.
O So support will be 2% (10/50)
O Confidence for the rule (diaper beer) will be 10/20 = 50%
O Confidence for the rule (beer diaper) will be 10/30 = 33.3%

we can say when people buy beer they also buy diapers 33.3% of the time

computer = antivirus_software [support = 2%, confidence = 60%]

O Rule support and confidence are two measures of Association rule interestingness.

o

They respectively reflect the usefulness and certainty of discovered rules.
O A support of 2% for Association Rule means that 2% of all the transactions under analysis show
that computer and antivirus software are purchased together.
O A confidence of 60% means that 60% of the customers who purchased a computer also bought
the software.
O Typically, association rules are considered interesting if they satisfy both a minimum support
threshold and a minimum confidence threshold.
O Such thresholds can be set by users or domain experts.
O Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence
threshold (min conf) are called strong.
The occurrence frequency of an itemset is the number of transactions that contain the itemset. This is

also known, simply, as the frequency, support count, or count of the itemset

Support and Confidence for Support count
O Support count: The support count of an itemset X, denoted by X.count, in a data set T is the
number of transactions in T that contain X. Assume T has n transactions.

O Then,

support = (X UY).count

(X wY).count
X.count

confidence =

Frequent Set
O Let T be the transaction database and o be the user-specified minimum support.
O Anitemset is said to be a frequent itemset in T with respect to o, if
s(X)r 20
If we assume o =50%, then {ANN,CC,TC}
is a frequent set as it is supported by at least 3
out of 6 transaction.
But {ANN, CC,D}is not a frequent itemset
t1={ANN,CC,TC,CG}
2={CC,D,CG}
t3={ANN,CC,TC,CG}
t4={ANN,CC,D,CG}
t5={ANN,CC,D,TC,CG}
t6={CC,D,TC}

Problem Decomposition
In general, association rule mining can be viewed as a two-step process:
1. Find all frequent itemsets: By definition, each of the itemsets will occur at least as frequently as
a predetermined minimum support count, min sup.
2. Generate strong association rules from the frequent itemsets: By definition, these rules must

satisfy minimum support and minimum confidence.

Downward Closure property
O Any subset of a frequent set is a frequent set
Upward Closure Property
O Any superset of an infrequent set is an infrequent set
Maximal Frequent Set
O A frequent set is a maximal frequent set if it is a frequent set and no superset of this is a
frequent set.
Border Set

O Anitemsetis a border set if it is not frequent set, but all its proper subsets are frequent sets.

EXAMPLE
O Consider the following transaction database
O Where total item set A={A1,A2,A4,As,Ag,A7,As,A0}
O Total transaction T= {T1,T2,T3,T4,Ts,T6,T7,Ts, To, T10, T11,T12,T13,T14, T15}
O Assume o =20%. Since T contains 15 records, it means that an item set that is supported by at

least three transaction is a frequent set.

Al A2 [A3 [A4 [A5 | A6 | A7 | A8 | A9
Tl 1 0 0 0 1 1 0 1 0
T2 0 1 0 1 0 0 0 1 0
T3 0 0 0 1 1 0 1 0 0
T4 0 1 1 0 0 0 0 0 0
TS 0 0 0 0 1 1 1 0 0
T6 0 1 1 1 0 0 0 0 0
7 0 1 0 0 0 1 1 0 1
T8 0 0 0 0 ! 0 0 0 0
T3 0 0 0 0 0 0 0 1 0
T10 0 0 1 0 1 0 1 0 0
T11 0 0 1 0 1 0 l 0 0
T12 0 0 0 0 1 | 0 1 0
T13 0 1 0 1 0 1 1 0 0
T14 1 0 1 0 1 0 1 0 0
T15 0 1 1 0 0 0 0 0 1

Table Sample Database

SUPPORT COUNT

s L o el i | e ol s o bR fm | s

Table Frequent Count for Some Itemsets

O Here {1}is not frequent set with respect to o
O {2},{3},{4},{5},{6},{7},{8},{5,6},{5,7},{6,7} are frequent set with respect to o
O {5,6,7}is border set, because its proper subset {5,6} and {7} are frequent set.

X SUPPORT COUNT
i1}
{2}
{3}
d
{5}
{6}
{7} -«
{8}
{9}
{5, 6}
{5, 7}
{6, 7}
{5.6, 7}

e | | R e | s | o o | b o | O

Table Frequent Count for Some Itemsets

APRIORI ALGORITHM

The Apriori Algorithm: Basics

The Apriori Algorithm is an influential algorithm for
mining frequent itemsets for boolean association rules.

Key Concepts :
« Frequent ltemsets: The sets of item which has minimum
support (denoted by L, for i""-ltemset).

« Apriori Property: Any subset of frequent itemset must be
frequent.

 Join Operation: To find L, , a set of candidate k-itemsets
Is generated by joining L,_, with itself.

* Find the frequent itemsets: the sets of items that have
minimum support
— A subset of a frequent itemset must also be a
frequent itemset
* i.e., if {AB} is a frequent itemset, both {A} and {B}
should be a frequent itemset
— lteratively find frequent itemsets with cardinality

from 1 to k (k-itemset)

+ Use the frequent itemsets to generate association rules.

The Apriori Algorithm : Pseudo
code

Join Step: C, is generated by joining L,_,with itself
Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

Pseudo-code:
C,: Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for (k=1; L, 1=0J; k++) do begin
C,+; = candidates generated from L,;
for each transaction ¢ in database do
increment the count of all candidates in C,,,
that are contained in ¢
L,.; = candidates in C,,, with min_support
end
return u, L;;

The Apriori Algorithm: Example

TID List of ltems
T 11,12, 15

T2 12, 14

T3 12, 13

T4 11,12, 14

TS 11, 13

Té6 12, 13

T7 11, 13

T8 11,12 13, 15
T? 11,12, 13

Consider a database, D ,
consisting of 9 transactions.

Suppose min. support count
required is 2 (i.e. min_sup = 2/9 =
22 %)

Let minimum confidence required
is 70%.

We have to first find out the
frequent itemset using Apriori
algorithm.

Then, Association rules will be
generated using min. support &
min. confidence.

Step 1: Generating 1-itemset Frequent Pattern

. o ltemset [Sup.Count Compare candidate ltemset | Sup.Count
can or rt t with
coun.t of each {I1} 6 ::gr;u;(;:pv:ln {11} 6
candidate {12} 7 count 2y |7

{13} 6 {3y |6

{14} 2 {14} 2

{15} 2 {5y |2

C1

The set of frequent 1-itemsets, L, , consists of the candidate 1-
itemsets satisfying minimum support.

In the first iteration of the algorithm, each item is a member of the set

of candidate.

Step 2: Generating 2-itemset Frequent Pattern

+ To discover the set of frequent 2-itemsets, L, , the
algorithm uses L, Join L, to generate a candidate set of

2-itemsets, C,.

* Next, the transactions in D are scanned and the support
count for each candidate itemset in C, is accumulated

« The set of frequent 2-itemsets, L, , is then determined,
consisting of those candidate 2-itemsets in C, having
minimum support.

Step 2: Generating 2-itemset Frequent Pattern

Generate

ltemset

c,

{I1,

12}

candidates
fromL,

{I1,

13}

{11,

14)

-

{11,

15)

Scan D for
count of
each
candidate

{12,

13)

{12,

14)

{12,

15)

{13,

14)

{13,

15}

{14,

15}

ltemset | Sup. Compare ltemset | Sup
Count | candidate Count

{1, 12} 4 225ﬂ?:tvith {11, 12} 4

{11, 13} 4 minimum {11, 13} 4

14 | 1 | eom M| 2

{11, 15} 2 {12, 13} 4

(12,13} 4 {12, 14} 2

214y | 2 2,15] 2

{12, 15} 2 L,

{13, 14} 0

{13, 15} 1

{14, 15} 0

Step 3: Generating 3-itemset Frequent Pattern

Based on the Apriori property that all subsets of a frequent itemset must
also be frequent

For example , lets take {I1, 12, I3}. The 2-item subsets of it are {1, 12}, {I1,
I3} & {12, 13}. Since all 2-item subsets of {I1, 12, I3} are members of L,, We
will keep {I1, 12, 13} in Cs.

Lets take another example of {I12, I3, 15} which shows how the pruning is
performed. The 2-item subsets are {12, |13}, {12, I5} & {I3,15}.

BUT, {I3, 15} is not a member of L, and hence it is not frequent violating
Apriori Property. Thus We will have to remove {12, I3, 15} from C,.

Therefore, C; = {{I1, 12, 13}, {1, 12, |15}} after checking for all members of
result of Join operation for Pruning.

Now, the transactions in D are scanned in order to determine L., consisting
of those candidates 3-itemsets in C; having minimum support.

Step 3: Generating 3-itemset Frequent Pattern

Compare
Scan D for . : Scan D for ltemset Sup. candidate ltemset Sup
count of emse count of support
each each Count count with Count
candidate {I1,12, 13} candidate {11, 12, 13} 2 min support {11, 12, 13} 2
{H, |2, |5} {|1, |2, |5} 2 uuuuuu {|1, |2., |5} 2
C, C, L

The generation of the set of candidate 3-itemsets, C, , involves use of
the Apriori Property.

In order to find C;, we compute L, Join L..

C,=L2 Join L2 = {11, 12, 13}, {I1, 12, I5}, {I1, 13, 15}, {12, 13, 14}, {12, I3,
15}, {I2, 14, I5}}.

Now, Join step is complete and Prune step will be used to reduce the
size of C,. Prune step helps to avoid heavy computation due to large C,.

Step 4: Generating 4-itemset Frequent Pattern

« The algorithm uses L, Join L, to generate a candidate
set of 4-itemsets, C,. Although the join results in {{I1, 12,
13, 15}}, this itemset is pruned since its subset {{I12, 13, 15}}
is not frequent.

* Thus, C, = @ , and algorithm terminates, having found
all of the frequent items. This completes our Apriori
Algorithm.

 What’s Next ?

These frequent itemsets will be used to generate strong
association rules (where strong association rules satisfy
both minimum support & minimum confidence).

Step 5: Generating Association Rules from Frequent
ltemsets

* Procedure:

» For each frequent itemset “1”, generate all nonempty subsets
of I.
» For every nonempty subset s of I, output the rule “s = (I-s)” if

support_count(l) / support_count(s) >= min_conf where
min_conf is minimum confidence threshold.

« Back To Example:
We had L = {{I1}, {I2}, {13}, {I4}, {15}, {I1,12}, {I1,13}, {I1,15}, {12,13},
{12,14}, {12,15}, {11,12,13}, {I1,12,15}}.
— Lets take I = {I1,12,15}.
— Its all nonempty subsets are {I1,12}, {11,153}, {I2,15}, {11}, {12}, {I5}.

Step 5: Generating Association Rules from
Frequent [temsets

« Let minimum confidence threshold is , say 70%.

* The resulting association rules are shown below,
each listed with its confidence.
-R1:MM2-> 15
« Confidence = sc{l1,12,15}/sc{l1,12} = 2/4 = 50%
* R1is Rejected.

-R2: 11215212
« Confidence = sc{l1,12,15}/sc{l1,15} = 2/2 = 100%
* R2 is Selected.

—R3: 127215 > |1
« Confidence = sc{l1,12,15}/sc{12,15} = 2/2 = 100%
* R3 is Selected.

Step 5: Generating Association Rules from
Frequent ltemsets

- R4: 11> 12715
+ Confidence = sc{l1,12,15}/sc{l1} = 2/6 = 33%
* R4 is Rejected.

- R5: 12> 11715
» Confidence = sc{l1,12,15}12} = 2/7 = 29%
* RS is Rejected.

- R6: 15> 11712
» Confidence = sc{l1,12,15}/ {15} = 2/2 = 100%
* RG is Selected.

In this way, We have found three strong
association rules.

Partition Algorithm

O The partition algorithm is based on the observation that the frequent sets are normally very
few in number compared to the set of all itemsets.

O If we partition the set of transactions to smaller segments such that each segment can be
accommodated in the main memory , then we can compute the set of frequent sets of each
of these partitions.

O The partition algorithm executes in two phases.

O In the first phase, the partition algorithm logically divides the database into a number of non —
overlapping partitions. The partitions are considered one at a time and all frequent itemsets
for that partiton are generated.

O If there are n-partitons, phase-1 of the algorithm takes n iterations.

O At the end of the phase-1, frequent itemsets are merged to generate a set of all potential

frequent itemsets.

O In phase -2 the actual support for the itemsets are generated and the frequent itemsets are
identified.

O The algorithm reads the entire database once du ring phase-1 and once phase-2

Partition Algorithm
P = partition_database({T); n = Number of partitions
{f Phase [
fori= 1 to n do begin

read_in_partition(T, in F)
L' = generate all frequent itemsets of T, using a priori method in main memory.
end

/f Merge Phase
Jor(k=2;L/w@, i=1,12,.. n k+) do begin

cf=gh
end

{{ Phase [1
Jori= 110 n do begin
read_in_partition(T, in P)
for all candidates ¢ € C° compute s(c);,
end

L= {ce C%)|s(c), 2 o)

Answer= L%

EXAMPLE
O Consider the following transaction database
O Where total item set A={A;,A;,A4,As,As,A7,As,Ac}
O Total transaction T= {T1,T5,T3,T4,T5,Te,T7,Ts,To,T10,T11,T12,T13,T14,T15}
O Assume o =20%. Since T contains 15 records, it means that an item set that is supported by at

least three transaction is a frequent set.

Al |A2 |A3 |Ad |AS | A6 | AT | AR | A9
T1 1 0 0 0 1 1 0 1 0
T2 0 1 0 1 0 0 0 1 0
T3 0 0 0 1 1 0 1 0 0
T4 0 1 1 0 0 0 0 0 0
TS5 0 0 0 0 1 1 1 0 0
TG 0 1 1] 0 0 0 0 0
T7 0 1 0 0 0 1 1 0 |
18 0 {0 Jo Jo [1 jo Jo o o
T3 0 0 0 0 0 0 0 1 0
T10 0 0 1 0 1 0 1 0 0
T11 0 0 1 0 1 0 | 0 0
T12 0 0 0 0 1 1 0 1 0
T13 0 1 0 1 0] 1 0 0
T14 1 0 1 0 1 0 1 0 0
T13 0 1 1 0 0 0 0 0 1
Table Sample Database

O Let us partition T into three partition T1, T2, T3, each containing 5 transactions

O T1 contains transaction 1to 5

O T2 contains transaction 6 to 10

O T3 contains transaction 11 to 15

O We fix the local support as equal to the given support, i.e 20%

O Any itemset that appears in just one of the transactions in any partition is a local frequent set

in partition

L= { {1}, {2), (3}, (4}, {5), {6}, {7}, {8), (L, 5}, {1, 6}, {1, 8}, {2,3), {2, 4}, .

{2, 8}, {4, 5}, {4, 7}, {4, 8}, {5, 6}, {5, 8}, {5, 7}, {6, 7}, {6, 8}, {16, 8},
{1,5.6}, {1.5,8}, {2,4,8}, {4,5,7}, {5.6,8}, {5.6,7}, {1,5,6,8} }

Similarly,

I?

={ {2}, {3}, {4}, {51, {6}, {7}, {8}, {9}, (2,3}, {24}, {2.,6), (2,7}, {2.9}, (3.4},

{3,5), {3, 75, {5. 75, {67}, (6.9}, {7.9}, {234}, {2.6,7}, (2,69}, {2,79},
(3.5, 7}, {2,679 }

L= { {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {13}, {1,5}, {1.7}, (2.3}, {24},

{2,6}, {2,7}, {2,9}, {3,5}, {3,7},{3,9},{4,6}, {4,7}, {5,6}, (5,7}, {5,8},
{6,7}, 16,8}, {1,3,5}, {1,3,7}, {1,5,7}, {2,3,9}, {2.4,6}, {2,4,7}, {3,5,7),
{4,6,7}, {5,6,8}, {1,3,5, 7}, {2,4,6,7} }

In Phase II, we have the candidate set as

C:

=flouliul?

C:={ {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {13}, {1, 5}, {1, 6}, {17}, {1, 8},

(2,3}, {2, 4}, (2,6}, {2,7), {2, 8}, {291,134}, (3.5}, 3,7}, (3.9}, {4, 5},
(4,6}, {4,7}, {4, 8}, {5, 6},{5,7}, {5, 8}, {5, 7}, {6, 7}, {6, 8}, {69},
{7,93.{1.3,5}, {1,3,7}, {1.5.6}, {1,577}, {1.5.8}, {1.6,8}, {2.3.4}, {2.3.9},
{2,4,6), (24,7}, {248}, {267}, {2,6,9}, {2,7,9}, {3.5,7}, {4,5,7}, {4,6,7},
{5.6,8}, {5,6,7}, {1,5,6,8}, {2,6,7,9}, {1,3,5,7}, {2,4,6, 7} }

O Read the database once to compute the global support of the sets in ¢ and get the final set of

frequent sets

Pincer-Search Algorithm

o

o

o

The pincer-search algorithm is based on the principle of bi-directional search, which takes the
advantages of both bottom-up and top-down approach .

In this algorithm, in each pass , in addition to counting the supports of the candidate in the
bottom- up direction, it also counts the supports of the item sets of some itemsets using top-
down approach. These are called Maximal Frequent Candidate Set(MFCS).

This process helps in pruning the candidate sets early on in the algorithm. If we find a maximal

frequent set in this process , then it is recoded in the MFCS.

Pincer-Search Method

L= k=1,C ={{i}|iel),§,=0,;
MFCS = {{1,2, ..., n}}; MFS :=&;
dountil C,=Dand §, =D
read database and count supports for C, and MFCS;
MFS := MFS w{frequent itemsets in MFCS};
§, = {infrequent itemsets in C,};
call MFCS-gen algorithm if §, = &,
call MFS-pruning procedure;
generate candidates €, from C; (similar to a priori’s generate & prune)
if any frequent itemset in C, is removed in MFS-pruning procedure
call the recovery procedure to recover candidates to C,, ;
call MFCS prune procedure to prune candidates in C,_ ;
k= k+1;
return MFS

MFCS-gen

Jor all itemsets s € S,

Jor all itemsets m € MFCS
if s is a subset of m
MFCS := MFCS\{m};

Jor all items e € itemset §

if m'\{e} is not a subset of any itemset in MFCS
MFCS := MFCS u{m\{e}}:
refurn MFCS

Recovery

Jor all itemsets / € C,
Sor all itemsets m € MFS
if the first k-1 items in / are also in m
/* suppose m.item/ = Litem, , */
Jor i from j+1 to |m|
C,.,=C,, v {{litem, Litem,, ..., Litem,, m.item } }

MFS-Prune

Jorall itemsets ¢ in €
if ¢ is a subset of any itemset is the current MFS
delete ¢ from C;

MFCS-Prune

Sor all itemsets ¢ in C|
if ¢ is not a subset of any itemset in the current MFCS

delete ¢ from C,_;

STEP1: L, =D k=1,
C, = {{1} {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
MFCS = {1,2,3,4,5,6,7,8,9}
MFS =,
PASS ONE: Database is read to count the support as fullows
{1} 2 2,{2} >6,{3}) =6,{4) >4,{5} >8,{6) =25, {7} =7, {8) =>4,{9}>2
{1,2,3,4,5,6,7,8,9} = 0.
So MFCS := {1,2,3,4, 5,6, 7, 8 9} and MFS ;= &;
L, = {{2}, {3}, {4}, {5}, {6}, {7}, {8}}
, = {{1}, {91}
At this stage we call the MFCS-gen to update MFCS.

For {1} in §, and for {1, 2, 3, 4, 5, 6, 7, 8, 9} in MFCS, we get the new element in
MFCS as {2,3,4,5,6,7,8,9}.

For {9} in §, and for {2,3,4,5,6, 7, 8, 9} in MFCS, we get the new element in MFCS
as {2,3,4,5,6,7, 8}.

We generate the candidate itemsets

G, ={ {2,3}, {2.4}, {2,5}, (2,6}, {2,7}, {2,8}, {3,4}, {3,3}, 13,6}, (3,7}, (3.8},
{4,5}, {4,6}, {4,7}, {4,8}, {5,6}, {5,7}, {5.8}, {6,7}, 16,8}, {7,8} }

PASS TWO: read the database to count the support of elements in C, and MFCS as
given below:

{2,3}-3, {2,4}-3, {2,5}0, {2,6}>2, {2,7}—2, {2,8}—], {3,4}—=1, {3,53}->3],
{3,6}20, {3,7}-23, {3,8}=0, {4,5}>1, {4,6}=1, {4,7}>2, {4,8}=>1, {5,6}—>3,
{5,7}->5, {5.8} =2, {6,7}—3, {6,8}—=2, {7,8} 0

{2,3,4,5,6,7,8}—0.
MFS:= @,
L,={ {2,3}, {2,4}, {3,5}, {3,7}, {5,6}, {5,7}, {6,7} }

S,={ {2,5}, {2,6}, {2, 7} {2,8}, {34}, {3,6}, {3.8}, {4,5}, {4.6}, {4,7}, {4,8},
{5.8}, {6,8}, {7.8} }

For {2,5} in S, and for {2, 3, 4, 5, 6, 7, 8} in MFCS, we get the new elements in
MFCS as {3,4,5,6,7,8} and {2, 3,4, 6,7, 8}

For {2,6} in §, and for {3, 4, 5, 6, 7, 8} in MFCS, since {2,6} is not contained in this
element of MFCS and hence, no action.

For {2, 3,4, 6, 7, 8} we get two new elements in MFCS in place of {2, 3, 4, 6, 7, 8} as
{3, 4, 6, 7, 8} and {2, 3, 4, 7, 8}. Since {3, 4, 6, 7, 8} is already contained in an
element of MFCS, it is excluded from MFCS.

So at this stage MFCS ;= {{ 3,4,5,6,7, 8}, {2,3,4,7, 8}}.
For {2,7} in §,, we get

MFCS = {{3,4,5,6,7, 8}, {2,3,4,8}}.

For {2,8} inS, weget

MFCS = {{3,4,5,6,7, 8}, {2, 3, 4} }.

For {3,4} in §,, we get |

MFCS = {{3,5,6,7, 8}, {4,5,6,7, 8}, {2, 3}, {2,4}}.
For {3,6} in §,, we get

MFCS = {{3, 5, 7, 8}, {4, 5, 6, 7, 8}, {2, 3}, {2,4}}.

For {3,8} in §,, we get

MFCS = {{3,5,7}, {4, 5,6, 7, 8}, {2, 3}, {2, 4}}.

For {4,5} in §,, we get

MFCS = {{3,5, 7}, {5,6,7,8}, {4,6,7, 8}, {2, 3}, {2,4}}.

For {4,5} in S,, we get
MFCS := {{3, 5,7}, {5,6,7, 8}, {4,6,7, 8}, {2,3}, {2,4} }.
For {4,6} in §,, we get

MFCS = {{3,5,7}, {5,6,7,8}, {4,7, 8}, 12, 3}, {2, 4}}.
For {4,7} in S,, we get

MFCS = {{3, 5,7}, {5, 6,7, 8}, {4, 8}, {2, 3}, {2, 4}}.
For {4,8} in §,, we get

MFCS := {{3, 5,7}, {5, 6,7, 8}, {2, 3}, {2, 4} }.

For {5,8} in §,, we get

MFCS = {{3,5,7}, {6, 7, 8}, {5, 6, 7}, {2, 3}, {2, 4} }.

For {6,8} in §,, we get

MFCS = {{7, 8}, {3.5, 7}, {5, 6, 7}, {2, 3}. {2, 4} }.

For {7,8} in §,, we get

MFCS = {{8}, {3,5, 7}, {5,6, 7}, {2, 3}, {2,4}].

We generate the candidate sets as

C,=1{{2,3,4}, {3,5, 7}, {5,6,7}}

In the pruning stage the itemsets {2, 3, 4} are pruned from C, and hence,
C={{3.5, 7). {5,6,7}}

At this stage we make one more pass of the database to count the supports of
{13,5,7}, {5, 6, 7}}.

